1. Abbasian, M.S., Abrishamchi, A., (2013). Comparison of multivariate analysis with univariate analysis for drought events. 8th National Congress of Civil Engineering, Faculty of Civil Engineering. Babol. (in Persian)
2. Abdullah, S. S., Malek, M. A., Mustapha, A., & Aryanfar, A., (2014). Hybrid of Artificial Neural Network-Genetic Algorithm for Prediction of Reference Evapotranspiration (ET^ sub 0^) in Arid and Semiarid Regions. Journal of Agricultural Science, 6(3), 191.
3. Aghakouchak, A., (2015). Amultivariate approach for persistence-based drought prediction: Application to the 2010-2-11 East Africa drought, Journal of Hydrology, 526,127-135.
4. Arshad, S., Morid, S., Mobasheri, M. R., Alikhani, M. A., & Arshad, S., (2013). Monitoring and forecasting drought impact on dryland farming areas. International Journal of Climatology, 33(8), 2068-2081.
5. Bazrafshan, O., Salajegheh, A., Mahdavi, M., Bazrafshan, J., (2015). A Study of Efficiency of the Hybrid model Artificial Neural Network Models - Stochastic in Hydrological Drought Forecasting Using kappa Statistics (Case Study: Gamasiab Watershed Basin). Iranian Journal of Watershed Management Science&Engineering, 8 (27):35-48. (in Persian)
6. Cohen Liechti, T., Matos, J.P., Boillat J.L., & Schleiss, A.J., (2012), ''Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin''. Hydrol. Earth Syst. Sci. No. 16: 489–500.
7. Farahmand, A., Aghakouchak, A., (2014). AGeneralized Framework for Deriving Nonparametric Standardized Drought Indicators, Advances in Water Resources, doi: 10.1016/j.advwatres.
8. Farahmand, A., Aghakouchak, A., Teixeira, J., (2015). Avantage from space con detect earlier drought onset: An approach using relative humidity, Journal of Scientific Reports, 5, doi:10.1038/srep08553.
9. Ghamghami, M., Bazrafshan, J., (2012). Prediction of meteorological drought conditions in Iran using the Markov chain model. Journal of Water and Soil Resources Conservation, 3(3); 1-12. (in Persian)
10. Ghobaei Souq, M., Mosaedi, A., Zare Abianeh, H., (2016). The necessity of drought monitoring based on multivariable indicators. 6th Iranian National Water Resources Management Conference, The University of Kordestan. (in Persian)
11. Golin, S., Mazdiyasni, O., Aghakouchak, A., (2014). Trends in meteorogical and agricultural drought in Iran. Theor App Climatol. DOI:10.1007/s00704-014-1139-6.
12. Hao, Z., AghaKouchak, A., (2013), Multivariate Standardized Drought Index: A Parametric Multi-Index Model, Advances in Water Resources, 57, 12-18, doi: 10.1016/j.advwatres.2013.03.009.
13. Hao, Z., AghaKouchak, A., (2014). A Nonparametric Multivariate Multi-Index Drought Monitoring Framework, Journal of Hydrometeorology, 15, 89-101, doi:10.1175/JHM-D-12-0160.1.
14. Hao, Z., Aghakouchak, A., Nakhjiri, N., Farahmand, A., (2015). Global integrated drought monitoring and prediction system, Journal of Scientific Data, doi:10.1038/sdata.2014.1.
15. Hao, Z., Singh, V.P., (2015). Drought characterization from a multivariate perspective: A review, Journsl of Hydrology. Vol 527, 668-678
16. Hassanvand, M. R., Karami, H., & Mousavi, S. F., (2018). Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing. Natural Hazards, 94(3), 1057-1080.
17. Hassanvand, M., Salimi, A., MasoompourSamakoosh, J., (2018). Drought prediction using neural network and meta-algorithms (Case study: Kermanshah Station). Conference: The First National Conference on The Role of Civil ENG. in Hazard MitigationAt: Kermanshah, I.R. Iran. (In Persian)
18. Hassanzadeh, Y., Abdi Kordani, A., Fakheri Fard, A., (2012). Drought Forecasting Using Genetic Algorithm and Conjoined Model of Neural Network-Wavelet. Journal of Water and Wastewater, 83(3); 48-59. (in Persian)
19. Holland, J. H (1992), Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
20. Janga Reddy, M., Singh, V, P., (2013). Multivariate modeling of drought using copulas and meta-heuristic methods, Stochastic Environmental Research and Risk Assessment. Vol 28, 475–489, doi:10.1007/s00477-013-0766-2.
21. Kang, H., Sridhar, V., (2017). Combined statistical and spatially distributed hydrological model for evaluating future drought indices in Virginia, Journal of Hydrology: Regional Studies, 12, 253-227.
22. Kao, SH., Govindaraju, S., (2010). Acopula-based deficit index for droughts, Journal of Hydrology, 380,121-134.
23. Kennedy, J.; Eberhart, R., (1995), Particle swarm optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks. ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, 27 Nov.-1 Dec. 1995; IEEE, 1995; pp 1942–1948, ISBN 0-7803-2768-3.
24. Kogan, F.N., (1997). Global Drought Watch from Space. Bulletin of the American Meteorological Society.Vol 78 NO 4: 621-636.
25. Loukas, A., Vasiliades, L., and Tzabiras, J (2007). “Evaluation of climate change on drought impulses in Thessaly, Greece.” European Water, 17/18, No. 17-28.
26. Mishra, A.K., Singh, V.P., (2010). Areview of drought concepts, Journal of Hydrology, 391,202-216.
27. Mishra, A.K., Singh, V.P., (2011). Drought modeling-Areview, Journal of Hydrology, 403,157-175.
28. Moeeni, H., Bonakdari, H., Fatemi, S. E., & Zaji, A. H (2017). Assessment of stochastic models and a hybrid artificial neural network-genetic algorithm method in forecasting monthly reservoir inflow. INAE Letters, 2(1), 13-23.
29. Moriasi, DN., Arnold JG., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L., (2007), Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3), 885-900.
30. Price, D., McKenney, D. W., Nalder, I. A., Hutchinson, M. F., Kesteven, J. L., (2000), A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data, Agricultural and Forest Meteorology 101: 81–94.
31. Sadeghian, M., Karami, H., Mousavi, S.F., (2018). Selection of a Proper Model to Predict Monthly Drought in Semnan Using Weather Data and Linear and Nonlinear Models. Journal of Water and Soil science; 21(4): 57-70. (in Persian)
32. Sette, S.; Boullart, L., (2001) Genetic programming: principles and applications. Engineering Applications of Artificial Intelligence, 14, 727–736, doi:10.1016/S0952-1976(02)00013-1.
33. Wilhite, D.A., (1995). Developing a precipitation-based index to assess climatic condition across Nebraska, Final report submitted to the Natural Resources Commission, Lincoln.Nebraska. p578.